
SWEN 262
Engineering of Software Subsystems

Singleton Pattern

Jiffy Web Server

1. A client may connect to the Jiffy Web Server

(JWS).
a. Clients issue requests using HTTP.
b. JWS responds to each request using HTTP.

2. JWS must log information about each request,

including:
a. Time/date stamp
b. Source IP address
c. HTTP request method (GET, POST, etc.)
d. HTTP headers
e. The HTTP response code and accompanying

message (200 OK, 404 NOT FOUND, etc.).

3. Multiple, concurrent clients may connect

simultaneously.
a. JWS must respond to each request as quickly as

possible.

Every web server must support multiple, concurrent
clients without blocking - handling requests from one
client should not impact the performance of others.

The web server must also log information about each
request from any client.

This means that the server must be multi-threaded (or
multi-process or multi-processor on a network for
scaling), so that it can communicate with potentially
many clients at the same time.

Everyone Gets a Logger! We will need a class that handles the
request/response from each client - let's
call it ClientHandler.

Each client handler will run in a separate
thread so that we can handle multiple,
concurrent clients at the same time.

One possible solution is that each client
handler will create its own logger to log its
requests all to the same place (file,
database, etc.).

Q: What are the possible drawbacks of
this approach?

A: What if two or more client handlers try
to write to the log at the same time?

A Global Variable Having many different threads all trying to
write to the same log file at the same time
will cause all kinds of problems.

What if we made a global variable in the
Logger class that any client handler
could access?

Q: What are the drawbacks of this
solution?

A: When does the global get created?
What if something goes wrong? How
does it know to which file it should write?
Aren't global variables kind of bad?

A Singleton Logger
public class Logger {

 public static final String LOGGER_FILENAME = "server.log";

 private static Logger INSTANCE;

 private final PrintWriter writer;

 private Logger() throws IOException {

 FileWriter fw = new FileWriter(LOGGER_FILENAME);

 writer = new PrintWriter(fw);

 }

 public static synchronized Logger instance() throws IOException {

 if(INSTANCE == null) {

 INSTANCE = new Logger();

 }

 return INSTANCE;

 }

}

A Singleton Logger
public class Logger {

 public static final String LOGGER_FILENAME = "server.log";

 private static Logger INSTANCE;

 private final PrintWriter writer;

 private Logger() throws IOException {

 FileWriter fw = new FileWriter(LOGGER_FILENAME);

 writer = new PrintWriter(fw);

 }

 public static synchronized Logger instance() throws IOException {

 if(INSTANCE == null) {

 INSTANCE = new Logger();

 }

 return INSTANCE;

 }

}

We make the Logger into a singleton starting with
a private, global variable for the one Logger that
everyone will use.

We also make sure that the constructor is private
so that no other class can make a Logger.

Next, we provide a globally accessible method that
creates a new instance of the Logger only if one
does not already exist.

This is referred to as lazy initialization - the logger
is only created at the moment that it is needed, and
then reused later.

GoF Singleton
Structure

Intent: Ensure a class only has one instance, and
provide a global point of access to it.

(Creational)

Remember that an underline in UML indicates that
something is static.

Jiffy Web Server System Design

Note that there may be many client handlers active at the
same time.

As usual, each class has a context
specific name...

...but its role in the pattern is indicated
in << guillemets >>.

This diagram shows the server
getting the singleton logger and
using it to log a message.

Later, as clients connect, they
use the static method to get the
same logger and use it to log
messages.

GoF Pattern Card

Name: Jiffy Web Server Logger GoF Pattern: Singleton

Participants

Class Role in Pattern Participant’s Contribution in the context of the application

Logger Singleton The single, globally accessible logger in the system. It is responsible for logging
messages from any client in a threadsafe way to the same file, database, etc.

JiffyWebServer Client The main Jiffy Web Server class. It creates client handler for each client request
that is received by the server. It also logs messages related to server activity
using the logger.

ClientHandler Client Handles requests from a single client. It uses the logger to log the status of each
request/response including information about the HTTP methods, response
code, error messages, and HTTP header.

Deviations from the standard pattern: None.

Requirements being covered: 2. JWS logs information about each request.

Indicators for Singleton

1. You must guarantee that there is at most one

instance of a class.

2. The class is needed globally; it is difficult to

assign ownership/responsibility for creating

the singleton to one other class in the

system.

3. Maybe: you need lazy initialization (you want

to defer making the singleton until it is

actually needed).

If you don't need at
least #1 and #2 then

you don't need
singleton.

Singleton

There are several consequences to
implementing the singleton pattern:
● Ensures that exactly one instance of a class

is created.
● Provides global access to the instance.
● Uses lazy initialization to only create the

singleton when it is needed.
● May be a fancy global variable, with all that

that entails.
● It may be difficult to customize creation of

the singleton.
● What happens if/when the singleton

"breaks?"

Things to Consider
1. Do you meet at least the two

most important criteria?
2. Is your singleton really just a

fancy global?
3. How do you create the singleton

if it needs other resources?
4. How does it affect the coupling

in the system?
5. Might a singleton become a

blob?

